Full Benchmark Report#

Generated: 2026-01-05T20:18:21.110509+00:00

Environment#

Property

Value

Machine

arm

Cores

10

Memory

32.0 GB

OS

Darwin 25.1.0

Git SHA

42da160

Library Versions#

Library

Version

Python

3.12.9

boosters

0.1.0

xgboost

3.1.2

lightgbm

4.6.0

numpy

2.4.0

Configuration#

  • Suite: full

  • Seeds: 5

  • n_estimators: 100

  • learning_rate: 0.1

  • max_depth: 6

  • growth_strategy: leafwise

  • max_bins: 256

  • min_samples_leaf: 1

  • reg_lambda (L2): 0.0

  • reg_alpha (L1): 0.0

  • linear_l2: 0.01

  • booster_types: gbdt, gblinear, linear_trees

Results#

Regression#

california (primary: rmse)

Booster

Library

rmse

train_time_s

gbdt

boosters

0.4071±0.0050

0.0901±0.0009

gbdt

lightgbm

0.4087±0.0061

0.1358±0.0014

gbdt

xgboost

0.4089±0.0057

0.1270±0.0016

gblinear

boosters

0.7370±0.0243

0.0297±0.0003

gblinear

xgboost

0.7370±0.0243

0.0454±0.0010

linear_trees

boosters

0.4573±0.0756

0.1695±0.0014

linear_trees

lightgbm

0.9466±0.5673

0.2170±0.0059

california_nan (primary: rmse)

Booster

Library

rmse

train_time_s

gbdt

boosters

0.4771±0.0058

0.1161±0.0011

gbdt

lightgbm

0.4767±0.0079

0.1844±0.0011

gbdt

xgboost

0.4742±0.0057

0.2402±0.0012

gblinear

boosters

0.9872±0.0145

0.0503±0.0014

gblinear

xgboost

0.9872±0.0145

0.0497±0.0022

linear_trees

boosters

0.4791±0.0067

0.2044±0.0009

linear_trees

lightgbm

0.8171±0.7022

0.2618±0.0015

california_weighted (primary: rmse)

Booster

Library

rmse

train_time_s

gbdt

boosters

0.5046±0.0092

0.0878±0.0007

gbdt

lightgbm

0.5022±0.0115

0.1351±0.0012

gbdt

xgboost

0.5052±0.0090

0.1261±0.0014

gblinear

boosters

0.9239±0.0748

0.0299±0.0002

gblinear

xgboost

0.9239±0.0748

0.0467±0.0010

linear_trees

boosters

0.5320±0.0452

0.1665±0.0018

linear_trees

lightgbm

0.9490±0.5352

0.2146±0.0015

synthetic_reg_medium (primary: rmse)

Booster

Library

rmse

train_time_s

gbdt

boosters

0.1710±0.0039

0.5810±0.0114

gbdt

lightgbm

0.2046±0.0029

0.8111±0.0068

gbdt

xgboost

0.2043±0.0036

1.6596±0.0165

gblinear

boosters

0.0005±0.0000

0.1497±0.0005

gblinear

xgboost

0.0005±0.0000

0.2285±0.0014

linear_trees

boosters

0.0909±0.0057

0.6808±0.0048

linear_trees

lightgbm

0.0927±0.0020

0.8977±0.0183

synthetic_reg_small (primary: rmse)

Booster

Library

rmse

train_time_s

gbdt

boosters

0.2352±0.0199

0.1771±0.0014

gbdt

lightgbm

0.2891±0.0161

0.2771±0.0018

gbdt

xgboost

0.2903±0.0163

0.6250±0.0188

gblinear

boosters

0.0006±0.0000

0.0152±0.0002

gblinear

xgboost

0.0006±0.0000

0.0231±0.0002

linear_trees

boosters

0.1722±0.0071

0.1916±0.0011

linear_trees

lightgbm

0.1891±0.0065

0.3208±0.0042

Quantile Regression#

liander_energy_forecasting (primary: rcrps)

Booster

Library

rcrps

train_time_s

gbdt

boosters

0.0708±0.0134

1.1056±0.0187

gbdt

lightgbm

0.0652±0.0138

0.7538±0.0106

gbdt

xgboost

0.0604±0.0112

2.7766±0.0563

gblinear

boosters

0.0684±0.0072

0.1769±0.0009

gblinear

xgboost

0.0735±0.0063

0.3327±0.0373

linear_trees

boosters

0.0711±0.0141

1.2970±0.0051

linear_trees

lightgbm

0.0831±0.0133

0.9027±0.0089

Binary Classification#

breast_cancer (primary: logloss)

Booster

Library

logloss

train_time_s

gbdt

boosters

0.0983±0.0307

0.0326±0.0010

gbdt

lightgbm

0.0866±0.0270

0.0199±0.0002

gbdt

xgboost

0.0978±0.0427

0.0444±0.0011

gblinear

boosters

0.1252±0.0397

0.0032±0.0001

gblinear

xgboost

0.1252±0.0397

0.0051±0.0002

linear_trees

boosters

0.0948±0.0319

0.0345±0.0010

linear_trees

lightgbm

0.0911±0.0207

0.0235±0.0005

synthetic_bin_medium (primary: logloss)

Booster

Library

logloss

train_time_s

gbdt

boosters

0.1736±0.0107

0.5471±0.0053

gbdt

lightgbm

0.1745±0.0125

0.6025±0.0422

gbdt

xgboost

0.1745±0.0130

1.0021±0.0187

gblinear

boosters

0.5063±0.0040

0.1623±0.0011

gblinear

xgboost

0.5063±0.0040

0.2262±0.0008

linear_trees

boosters

0.1787±0.0145

0.6598±0.0051

linear_trees

lightgbm

0.1781±0.0121

0.6371±0.0154

synthetic_bin_small (primary: logloss)

Booster

Library

logloss

train_time_s

gbdt

boosters

0.2910±0.0456

0.1520±0.0025

gbdt

lightgbm

0.2768±0.0405

0.1536±0.0056

gbdt

xgboost

0.2722±0.0349

0.2720±0.0075

gblinear

boosters

0.6017±0.0258

0.0170±0.0001

gblinear

xgboost

0.6017±0.0258

0.0233±0.0003

linear_trees

boosters

0.2926±0.0461

0.1599±0.0016

linear_trees

lightgbm

0.2850±0.0520

0.1630±0.0030

Multiclass Classification#

covertype (primary: mlogloss)

Booster

Library

mlogloss

train_time_s

gbdt

boosters

0.4369±0.0066

2.8936±0.1540

gbdt

lightgbm

0.4285±0.0074

1.8948±0.0143

gbdt

xgboost

0.4698±0.0064

2.2280±0.0237

gblinear

boosters

0.7532±0.0117

3.0599±0.0405

gblinear

xgboost

0.7535±0.0084

4.6886±0.0374

linear_trees

boosters

0.4282±0.0070

5.1809±0.1419

linear_trees

lightgbm

0.4047±0.0084

2.6936±0.0192

iris (primary: mlogloss)

Booster

Library

mlogloss

train_time_s

gbdt

boosters

0.1738±0.1038

0.0016±0.0001

gbdt

lightgbm

0.1423±0.0872

0.0083±0.0006

gbdt

xgboost

0.1846±0.1158

0.0081±0.0003

gblinear

boosters

0.3106±0.0374

0.0008±0.0000

gblinear

xgboost

0.4261±0.0304

0.0021±0.0001

linear_trees

boosters

0.1770±0.0970

0.0020±0.0000

linear_trees

lightgbm

0.1063±0.0652

0.0130±0.0009

synthetic_multi_small (primary: mlogloss)

Booster

Library

mlogloss

train_time_s

gbdt

boosters

0.6771±0.0997

0.5393±0.0044

gbdt

lightgbm

0.6668±0.1138

0.6864±0.0115

gbdt

xgboost

0.6654±0.1010

1.7020±0.0328

gblinear

boosters

1.0560±0.0461

0.0831±0.0005

gblinear

xgboost

1.0546±0.0451

0.1121±0.0006

linear_trees

boosters

0.6781±0.1073

0.5680±0.0136

linear_trees

lightgbm

0.6876±0.1082

0.6941±0.0040

Reproducing#

boosters-eval full

Best values per metric are bolded. Lower is better for loss/time metrics.