boosters#
boosters is a high-performance gradient boosting library for Python and Rust.
โก Fast ยท Rust core | ๐ Compatible ยท sklearn API | ๐ฏ Flexible ยท GBDT & GBLinear | ๐ Explainable ยท SHAP values |
Installation#
pip install boosters
uv pip install boosters
git clone https://github.com/egordm/booste-rs
cd booste-rs
pip install -e packages/boosters-python
Quick Example#
from boosters.sklearn import GBDTRegressor
model = GBDTRegressor(n_estimators=100, max_depth=6)
model.fit(X_train, y_train)
predictions = model.predict(X_test)
Learn#
How to use boosters?
Installation โ Installation
Choosing an API โ sklearn vs Core API
User Guide โ All guides
Hands-on examples
Tutorial 01: Basic GBDT Training โ Your first model
Tutorial 03: Binary Classification โ Classification
Tutorials โ All tutorials
Reference#
API Documentation
Python API โ Python API
Rust API โ Rust API (docs.rs)
Research & Design
Research โ Algorithm deep dives
RFCs โ Design documents
Full Benchmark Report โ Benchmarks
Community#
Contributing
Development Setup โ Development setup
Architecture โ Architecture overview
Tools
boosters-eval โ Evaluation framework