boosters.GBLinearConfig#

class boosters.GBLinearConfig#

Bases: object

Main configuration for GBLinear model.

GBLinear uses gradient boosting to train a linear model via coordinate descent. Simpler than GBDT but can be effective for linear relationships.

Parameters:
  • n_estimators – Number of boosting rounds. Default: 100.

  • learning_rate – Step size for weight updates. Default: 0.5.

  • objective – Loss function for training. Default: Objective.Squared().

  • metric – Evaluation metric. None uses objective’s default.

  • l1 – L1 regularization (alpha). Encourages sparse weights. Default: 0.0.

  • l2 – L2 regularization (lambda). Prevents large weights. Default: 0.0.

  • early_stopping_rounds – Stop if no improvement for this many rounds.

  • seed – Random seed for reproducibility. Default: 42.

Examples

>>> config = GBLinearConfig(
...     n_estimators=200,
...     learning_rate=0.3,
...     objective=Objective.logistic(),
...     l2=0.1,
... )
classmethod __new__(*args, **kwargs)#
early_stopping_rounds#

Early stopping rounds (None = disabled).

l1#

L1 regularization (alpha).

l2#

L2 regularization (lambda).

learning_rate#

Learning rate (step size).

max_delta_step#

Maximum per-coordinate Newton step (stability), in absolute value.

Set to 0.0 to disable.

metric#

Get the evaluation metric (or None).

n_estimators#

Number of boosting rounds.

objective#

Get the objective function.

seed#

Random seed.

update_strategy#

Coordinate descent update strategy.

verbosity#

Verbosity level for training output.