boosters.sklearn.GBLinearClassifier#
- class boosters.sklearn.GBLinearClassifier[source]#
Bases:
_GBLinearEstimatorBase,ClassifierMixinGradient Boosted Linear Classifier.
A sklearn-compatible wrapper around GBLinearModel for classification.
- Parameters:
n_estimators (int, default=100) – Number of boosting rounds.
learning_rate (float, default=0.5) – Step size for weight updates.
l1 (float, default=0.0) – L1 regularization.
l2 (float, default=1.0) – L2 regularization.
early_stopping_rounds (int or None, default=None) – Stop if no improvement for this many rounds.
seed (int, default=42) – Random seed.
objective (Objective or None, default=None) – Loss function. Must be a classification objective. If None, auto-detects: Objective.logistic() for binary, Objective.softmax() for multiclass.
metric (Metric or None, default=None) – Evaluation metric. If None, uses Metric.logloss().
Attributes
----------
model (GBLinearModel) – The fitted core model.
classes (ndarray) – Unique class labels.
coef (ndarray) – Coefficient weights.
intercept (ndarray) – Intercept terms.
- __init__(n_estimators=100, learning_rate=0.5, l1=0.0, l2=1.0, early_stopping_rounds=None, seed=42, n_threads=0, verbose=1, objective=None, metric=None)#
- fit(X, y, eval_set=None, sample_weight=None)#
Fit the estimator.
- Parameters:
X (array-like of shape (n_samples, n_features)) – Training input samples.
y (array-like of shape (n_samples,)) – Target values.
eval_set (tuple of (X, y), optional) – Validation set as (X_val, y_val) tuple.
sample_weight (array-like of shape (n_samples,), optional) – Sample weights.
Returns
-------
self – Fitted estimator.
- Return type:
Self
- get_metadata_routing()#
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
routing – A
MetadataRequestencapsulating routing information.- Return type:
MetadataRequest
- get_params(deep=True)#
Get parameters for this estimator.
- score(X, y, sample_weight=None)#
Return accuracy on provided data and labels.
In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.
- Parameters:
X (array-like of shape (n_samples, n_features)) – Test samples.
y (array-like of shape (n_samples,) or (n_samples, n_outputs)) – True labels for X.
sample_weight (array-like of shape (n_samples,), default=None) – Sample weights.
- Returns:
score – Mean accuracy of
self.predict(X)w.r.t. y.- Return type:
- set_fit_request(*, eval_set='$UNCHANGED$', sample_weight='$UNCHANGED$')#
Configure whether metadata should be requested to be passed to the
fitmethod.Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with
enable_metadata_routing=True(seesklearn.set_config()). Please check the User Guide on how the routing mechanism works.The options for each parameter are:
True: metadata is requested, and passed tofitif provided. The request is ignored if metadata is not provided.False: metadata is not requested and the meta-estimator will not pass it tofit.None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
- Parameters:
eval_set (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
eval_setparameter infit.sample_weight (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_weightparameter infit.self (GBLinearClassifier)
- Returns:
self – The updated object.
- Return type:
- set_params(**params)#
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline). The latter have parameters of the form<component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters:
**params (dict) – Estimator parameters.
- Returns:
self – Estimator instance.
- Return type:
estimator instance
- set_score_request(*, sample_weight='$UNCHANGED$')#
Configure whether metadata should be requested to be passed to the
scoremethod.Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with
enable_metadata_routing=True(seesklearn.set_config()). Please check the User Guide on how the routing mechanism works.The options for each parameter are:
True: metadata is requested, and passed toscoreif provided. The request is ignored if metadata is not provided.False: metadata is not requested and the meta-estimator will not pass it toscore.None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
- Parameters:
sample_weight (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_weightparameter inscore.self (GBLinearClassifier)
- Returns:
self – The updated object.
- Return type:
-
model_:
GBLinearModel#